Some Things | Have Learned About
Static Analysis and Static Analysis
Tools, Including Ideas on Their Role In

Software Development
Paul E. Black

paul.black@nist.gov

http://samate.nist.gov/

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Outline

e The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

e What is static analysis?
e Limits of automatic tools
e State of the art in static analysis tools

e Static analyzers in the software
development life cycle

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

What is NIST?

U.S. National Institute of Standards and Technology
A non-regulatory agency in Dept. of Commerce
3,000 employees + adjuncts

Gaithersburg, Maryland and Boulder, Colorado
Primarily research, not funding

Over 100 years in standards and measurements:
from dental ceramics to microspheres, from quantum
computers to fire codes, from body armor to DNA
forensics, from biometrics to text retrieval.

y p— - l,

Four atom
quantum
entanglement

The NIST SAMATE Project

e Software Assurance Metrics And Tool Evaluation (SAMATE)
project is sponsored in part by DHS
e Current areas of concentration
— Web application scanners
— Source code security analyzers
— Static Analyzer Tool Exposition (SATE)
— Software Reference Dataset
— Software labels
— Malware research protocols

e Web site http://[samate.nist.gov/

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Software Reference Dataset

Public repository for

NIST v ‘r@» - @ software test cases

;lm:::’;n:::;o;:?i / Vg A ~) DHS N'atlor[i)aiIVi(;)i/tl))r(:r Security
/ ¢ & o % .A.."
 SRD Home View /Download ‘More Downloads Submit Test Sutes
Almost 1800 cases in C,
Extended Search S Code S h
xtended Search | | Source Code Search | C++, Java, and Python
Number (Test case ID): | Weakness Code Complexity
[=-Any...
Description contains : | ?— CWE-485: Insufficient Encapsulation
b ; -+ CWE-388: Error Handling e Search and compose
ContributoriAuthor : | I [+ CWE-389: Error Conditions, Return Values, Status Codes p

(- CWE-254: Security Features Custom Test SUites

[+~ CWE-227: Failure to Fulfill APl Contract (API Abuse)
?lz— CWE-019: Data Handling

’T‘L CWE-361: Time and State

[=- CWE-398: Indicator of Poor Code Quality

}—CWE-470:Use of Externally-Controlled Input to Select Classes ® ContribUtions from

Bad/Cood: [Any...

Language :

Type of Artifact: | any

Status© candidate ™ Approved ¥

[+- CWE-465: Pointer Issues H
[
Weakness : |Any... [+ CWE-411: Resource Locking Prohlems Fortlst Defence R&D
CWE-401: Failure to Release Memory Before Removing Last f
Code complexity : |Any... CWE-415: Double Free Canada, K|OCWOI’k, MIT
L 5 B CWE-416: Use After Free Lincoln Laboratory
o Mlg,%’ ® any © Before O Atter [+- CWE-417: Channel and Path Errors ’
use the calendar (nexticon). || Praxis, Secure Software,
|_Search Test Cases | etc

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

58 2005-11-02 Java Source Code | SecureSoftware C g?;c L':smg a a random initialization vector with Cipher 8

71 2005-11-07 Java | Source Code | SecureSoftware | | (C gmgagiszfé’ffk statement so that one may fall 8
1552 2006-06-22 Java | Source Code | Jeff Meister E Tainted input allows arbitrary files to be read and Q
1553 2006-06-22 Java | Source Code | JeffMeister | | (C [| Jainted input allows arbitrary files o be read and v
1554 2006-06-22 Java | Source Code | Jeff Meister | | (C ;:‘;’:wif;';a°gfef:;i%n:r are performed on a filename, Q
1567 2006.06-22 Java | Source Code | JeffMeister | [(C | | 1%, Credentials for connecting 1o the datatass are 8
1568 2006-06-22 Java | Source Code | JeffMeister | |(C | | [he, Credentials for connecting o the datatass are V
1569 2006-06-22 Java | Source Code | Jeff Meister E The credentials for connecting fo the database are v
1570 2006-06-22 Java Source Code Jeff Meister C ﬁge :xception leaks internal path information to the 8
1571 2006-06-22 Java Source Code Jeff Meister C ﬁ;‘e :.):?It;gt(;on leaks internal path information to the v
1579 2006-06-22 Java Source Code Jeff Meister C Tainted output allows log entries to be forged. 8

N HNaﬁonul Institute of Standards and Technology ¢ U.S. Department of Commerce

PUDIK CTRESS rllel Dad CAKRIUS NTTPOoOErVLIeET

public void doGet! }{ttpSexvletReque.;t req, HttpServletResponse res)
throws ServletException, ‘

res .setContentType "text/html");
ServletOutputStream out = res.getOutputStreami):
out.printin("<sHTML><HEAD><TITLE>Test</TITLE></HEAD><BODY><blockquote><pre>"):

name = req.getParameter"name");
| msg = req.getParameter"msg"
finame '= null) |
iry |
f = new File("tmp", name) ; /™ BAD */
fimsg !'= null |
fw = new FileWriter(£): *BAD *
fw.writeimsg, 0, msg.lengthi)):
fw .close();
out .printin("message stored"):
line;
B uffe fr = new CulferedReaderinew Filel
while(lline = fr.readLine()) '= null

out.printiniline);

} calch(Exception e) |
throw new ServletExceptionie);

N gNuﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

rig))

Software Label

e Software Facts should be:

Voluntary
Absolutely simple to produce
In a standard format for other claims

e What could be easily supplied?

Source available? Yes/No/Escrowed
Default installation is secure?
Accessed: network, disk, ...

What configuration files? (registry, ...)

Certificates (e.g., "No Severe weaknesses
found by CodeChecker ver. 3.2")

e Cautions

— Labeling diverts effort from real improvements.

A label can give false confidence.
A label shut out better software.

N gNaiional Institute of Standards and Technology ¢ U.S.C

Software Facts

Name InvadingAlienOS
Version 1996.7.04
Expected number of users 15

Modules 5 483 Modules from libraries 4 102

% Vulnerability

Cross Site Scripting 22 65%

Reflected 12 55%
Stored 10 55%
SQL Injection 2 10%
Buffer overflow 5 95%

Total Security Mechanisms 284 100%
Authe ntication 15 5%
Access control 3 1%
Input validation 230 81%
Encryption 3 1%

AES 256 bits, Triple DES

Re port security flaws to: ciwnmcyi@mothership.milkyway

9

Total Code 3.1415x107 function points 100%
C 1.1x10° function points 35%
Ratfor 2.0415x10% function points 65%

Test Material 2.718x10° bytes 100%
Data 2.69x10° bytes 99%
Executables 27.18x10° bytes 1%

Documentation 12 058 pages 100%
Tutorial 3971 pages 33%
Reference 6 233 pages 52%
Design & Specification 1 854 pages 15%

Libraries: Sun Java 1.5 runtime, Sun J2EE 1.2.2,
Jakarta log4j 1.5, Jakarta Commons 2.1,
Jakarta Struts 2.0, Harold XOM 1.1rc4, Hunter JDOMv1

Compiled with gcc (GCC) 3.3.1

Stripped of all symbols and relocation information.

Outline

e The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

e What is static analysis?
e Limits of automatic tools
e State of the art in static analysis tools

e Static analyzers in the software
development life cycle

N HNationul Institute of Standards and Technology ¢ U.S. Department of Commerce

Static Analysis

|
Java, '
Ada,] Weaknesses
C++, Static &
Z> Analysis - Vulnerabilities
binary

7

e Examine design, source code, or binary for
weaknesses, adherence to guidelines, etc.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Comparing Static Analysis with
Dynamic Analysis

Static Analysis

Code review o
Binary, byte, or source o
code scanners °
Model checkers & property

proofs °

Assurance case

Dynamic Analysis

Execute code
Simulate design

Fuzzing, coverage, MC/DC,
use cases

Penetration testing

e Field tests

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Strengths of Static Analysis

e Applies to many artifacts, not just code
e Independent of platform

e In theory, examines all possible
executions, paths, states, etc.

e Can focus on a single specific property

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Strengths of Dynamic Analysis

e No need for code

e Conceptually easier - “if you can run the
system, you can run the test”.

e No (or less) need to build or validate
models or make assumptions.

e Checks installation and operation, along
with end-to-end or whole-system.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Static and Dynamic Analysis
Complement Each Other

Static Analysis Dynamic Analysis

e Handles unfinished code e Code not needed, e.g.,

e Higher level artifacts embedded systems

e Can find backdoors, e.g., e Has few(er) assumptions
full access for user name e Covers end-to-end or
“JoshuaCaleb” system tests

e Potentially complete e Assess as-installed

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Different Static Analyzers Exist
For Different Purposes

e To check intellectual property violation

e By developers to decide what needs to be
fixed (and learn better practices)

e By auditors or reviewer to decide if it is
good enough for use

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Dimensions of Static Analysis

Application
(explicit)

Design

Source

Properties

General

(implicit)

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Dimension: Human Involvement

e Range from completely manual
— code reviews
e analyst aides and tools
— call graphs
— property prover
¢ human-aided analysis
— annotations
e to completely automatic
— scanners

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Dimension: Properties

e Analysis can look for anything from
general or universal properties:
— don’t crash
— don’t overflow buffers
— filter inputs against a “white list”
e to application-specific properties:
— log the date and source of every message

— cleartext transmission
— user cannot execute administrator functions

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Dimension: Subject

e Design,

e Architecture,
e Requirements,
e Source code,
e Byte code, or
e Binary

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Dimension: Level of Rigor

e Syntactic
— flag every use of strcpy()

e Heuristic

— every open() has a close(), every lock() has an
unlock()

e Analytic
— data flow, control flow, constraint propagation

e Fully formal
— theorem proving

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Some Steps in Using a Tool

e License per machine or once per site or
pay per LoC

e Direct tool to code
— List of files, “make” file, project, directory, etc.

e Compile
e Scan
e Analyze and review reports

e May be simple: flawfinder *.c

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Example tool output (1)

char sys[512] = "/usr/bin/cat ";
25 gets (buff) ;

strcat (sys, buff);
30 system(sys) ;

foo.c:30:Critical:Unvalidated string 'sys' 1s received from an
external function through a call to 'gets' at line 25. This can
be run as command line through call to 'system' at line 30. User
input can be used to cause arbitrary command execution on the

host system. Check strings for length and content when used for
command execution.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Example tool output (2)

102 static void rawlog dump(RAWLOG REC *rawlog, int f)

103 {

104 GSList *tmp;

105

106 for (tmp = rawlog->lines; tmp != NULL; tmp = tmp->next) {

107 write(f, tmp->data, strlen((char *) tmp->data));

108 write(£, "\n", 1);

109 }

110 }

111

112 void rawlog_open(RAWLOG_REC *rawlog, const char *fname)

113 {

114 char *path;

115

116 g return if fail(rawlog != NULL);

117 g return if fail(fname != NULL);

118

119 if (rawlog->logging)

120 return;

121

122 path = convert home(fname);
@ Event negative_return_fn: Called negative-returning function "open(path, 1089, log file create mode)"

Event var_assign: NEGATIVE return value of "open" assigned to signed variable "rawlog->handle"
@123 rawlog->handle = open(path, O _WRONLY | O _APPEND | O_CREAT,

124 log file create mode);

125 g _free(path);

126

Event negative_returns: Tracked variable "rawlog->handle" was passed to a negative sink. [details]
@127 rawlog dump(rawlog, rawlog->handle);

128 rawlog->logging = rawlog->handle != -1;

129 }

N gNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Example tool output (3)

Problem

true

£f <= -1

S$param 2 <= -1

f <= -1

Line

140
141
142
143
144
145
146
147
148
149

102
103
104
105
106
107

Source

/ul/paul/SATE/2010/c/irssifirssi-0.8.14/src/corefrawlog.c
Enter rawlog_save

void rawlog save(RAWLOG_REC *rawlog, const char *fname)

{

char *path;
int £;

path convert_home(fname) ;
f open(path, O_WRONLY | O_APPEND | O_CREAT,

g_free(path);

rawlog_dump(rawlog, £);
Enter rawlog_save /rawlog_dump
static void rawlog dump(RAWLOG_REC *rawlog, int f)

{
GSList *tmp;

log_file_ create_mode);

for (tmp rawlog->lines; tmp != NULL; tmp = tmp->next)

write(£f, tmp->data, strlen((char ¥*)

Exitrawlog_save /rawlog_dump

tmp->data));

{

/* Null Pointer Dereference

/* Negative file descriptor

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Possible Data About Issues

e Name, description, examples, remedies
e Severity, confidence, priority
e Source, sink, control flow, conditions

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Tools Help User Manage Issues

e View issues by
— Category
— File
— Package
— Source or sink
— New since last scan
— Priority
e User may write custom rules

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

May Integrate With Other Tools

e Eclipse, Visual Studio, etc.
e Penetration testing

e Execution monitoring

e Bug tracking

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Outline

e The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

e What is static analysis?
e Limits of automatic tools
e State of the art in static analysis tools

e Static analyzers in the software
development life cycle

N HNationul Institute of Standards and Technology ¢ U.S. Department of Commerce

Overview of Static Analysis Tool
Exposition (SATE)

e Goals:
— Enable empirical research based on large test sets
— Encourage improvement of tools

— Speed adoption of tools by objectively demonstrating their use
on real software

e NOT to choose the “best” tool

e Events
— We chose C & Java programs with security implications
— Participants ran tools and returned reports
— We analyzed reports
— Everyone shared observations at a workshop
— Released final report and all data later

e http://[samate.nist.gov/SATE.html
e Co-funded by NIST and DHS, Nat’l Cyber Security Division

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

SATE Participants

e 2008:
- Aspect Security ASC * HP Devinspect
« Checkmarx CxSuite » SofCheck Inspector for Java
* Flawfinder * UMD FindBugs
* Fortify SCA * Veracode SecurityReview
« Grammatech CodeSonar
e 2009:
* Armorize CodeSecure * Klocwork Insight
- Checkmarx CxSuite * LDRA Testbed
- Coverity Prevent » SofCheck Inspector for Java
« Grammatech CodeSonar * Veracode SecurityReview

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

SATE 2010 tentative timeline

Hold organizing workshop (12 Mar 2010)

Recruit planning committee.

Revise protocol.

Choose test sets. Provide them to participants (17 May)
Participants run their tools. Return reports (25 June)
Analyze tool reports (27 Aug)

Share results at workshop (October)

Publish data (after Jan 2011)

® 6 6 6 o o < X

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Do We Catch All Weaknesses?

e To answer, we must list “all weaknesses.”

e Common Weakness Enumeration (CWE) is
an effort to list and organize them.

e Lists almost 700 CWEs
http://cwe.mitre.org/

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

"One Weakness” is an illusion

e Only 1/8 to 1/3 of weaknesses are simple.

e The notion breaks down when
— weakness classes are related and
— data or control flows are intermingled.

e Even “location” is nebulous.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

How Weakness Classes Relate

Improper Input
Validation CWE-20
Command

Injection
CWE-77

e Hierarchy

Cross-Site
Scripting
CWE-79

¢ Chalns Validate-

Relative

Path Traversal
CWE-23

CWE-180

lang = %2e./%2e./%2e./etc/passwds00

Predictability

e Composites
CWE-340

Container
Errors
CWE-216

Symlink
Following
CWE-61

Permissions
CWE-275

Race
Conditions
CWE-362

® from “Chains and Composites", Steve Christey, MITRE
http://cwe.mitre.org/data/reports/chains_and_composites.html

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

“Number of bugs” is ill-defined
Tangled Flow: 2 sources, 2 sinks, 4 paths

1503 free 26042 free
resche resche

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Many weaknesses are ill-defined

e CWE-121 Stack-based Buffer Overflow

Description Summary:

— A stack-based buffer overflow condition is a
condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable
or, rarely, a parameter to a function).

White Box Definition:

— A buffer overflow where the buffer from the
Buffer Write Operation is statically allocated.

From CWE version 1.3

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Is this an instance of CWE-1217

char *buf;

int main(int argc, char **argv) {
buf = (char *)alloca(250);
strcpy (buf, argv[1l]);

— “... the buffer being overwritten is allocated on the
stack (i.e., is a local variable or, rarely, a
parameter to a function).”

e Strictly, no, because buf is a global variable.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Is this an instance of CWE-1217

char *buf;

int main(int argc, char **argv) {
buf = (char *)alloca(250);
strcpy (buf, argv[1l]);

— “... the buffer from the Buffer Write Operation is
statically allocated”

e Again, strictly, no: buf dynamically allocated

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

We need more precise, accurate
definitions of weaknesses.

e One definition won’t satisfy all needs.
e “Precise” suggests formal.

e “Accurate” suggests (most) people agree.
e Probably not worthwhile for all 700 CWEs.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Example: theoretical integer
overflow, from SRD case 2083

int main(int argc, char **argv) {
char buf [MAXSIZE];

. put a string in buf
if (strlen(buf) + strlen(argv[2]) < MAXSIZE) {

strcat (buf, argv([2]);
}

. do something with buf

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Example: language standard vs.
convention, from SRD case 201

typedef struct {
int int field;
char buf[10];
} my struct;

int main(int argc, char **argv) {
my struct s;

s.buf[10] = "A';

return 0O;

}

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Outline

e The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

e What is static analysis?
e Limits of automatic tools
e State of the art in static analysis tools

e Static analyzers in the software
development life cycle

N HNaﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

General Observations

e Tools can’t catch everything: unimplemented features,
design flaws, improper access control, ...

e Tools catch real problems: XSS, buffer overflow, cross-site
request forgery
— 13 of SANS Top 25 (21 counting related CWEs)

e Tools are even more helpful when tuned

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Tools Useful in Quality “Plains”

Tools alone are not
enough to achieve the
highest “peaks” of quality.

In the “plains” of typical
quality, tools can help.

If code is adrift in a “sea”

Tararua mountains and the Horowhenua region, New Zealand

Swazi Apparel Limited www.swazi.co.nz used with permission Of C h ad0S y tra i N d eve I (0) pe rsS.

N gNuﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

Precision & Recall Scoring

Reports
Everything

Misses
Everything

100

The Perfect Tool

Finds all flaws and
finds only flaws

80

60

Finds more flaws

40

Finds mostly flaws

20

0
0 20 40 60 80 100
No True All True
Positives Positives

from DoD 2004

Tool A

Reports 1))

Everything
80
60 Use after free —@
TOCTOU
Tainted data/Unvalidated user input
Memory leak
40
All flaw types
Uninitialized variable use
Null pointer dereference
20
Buffer overflow
Improper return value use
Misses
Everything 0 100
No True All True
Positives Positives

from DoD 2004

Tool B

Reports 1))

Everything Command injection
Tainted data/Unvalidated user input
80 Format string vulnerability
./ Improper return value use
60 ‘\ Use after free
Buffer overflow
All flaw types TOCTOU
40
Memory leak Uninitialized variable use
20
Null pointer dereference
Misses 0
Everything 20 40 60 80 100
No True All True
Positives Positives

from DoD 2004

Best of each Tool

Reports 1))

Everything Format string vulnerability
Tainted data/Unvalidated user input L
Command injection
80
Improper return value use
Buffer overflow
60 .
Null pointer dereference Use after free
TOCTOU
40
Memory leak
Uninitialized variable use
20
Misses 0
Everything ¢ 20 40 60 80 100
No True All True
Positives Positives

from DoD 2004

USe a
Beftler

Langgage

Ni al Institute of Standards and Technology ¢ U.S. Department of Commerc

Summary of SATE 2009 reports

e Reports from 18 tool runs
— 4 or 5 tools on each program

e About 20,000 total warnings
— but tools prioritize by severity, likelihood

e Reviewed 521 warnings - 370 were not false

e Number of warnings varies a lot by tool and
case

e 83 CWE ids/221 weakness names

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Tools don’t report same warnings

Overlap in Not-False Warnings
3

40

1 tool
H 2 tools

207 3 tools

120 H 4 tools

N gNuﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

Some types have more overlap

Overlap in Not-False Buffer Errors

[1 tool

H 2 tools
3 tools
H 4 tools

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Why don’t tools find same things?

e Tools look for different weakness classes
e Tools are optimized differently

>

more certain

>
more severe

N HNaﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

Tools find some things people find

IRSSI (3) 1

Roller (10) 4 1

[1Same or other [l Coincidental []None

Includes two
access control
issues — very
hard for tools

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Tools Complement Humans

Example from DCC Chat

00513 /* generate a random id */

00514 p_id = rand() % 64;

00515 dcc->pasv_id = p id;

00642 (dcc->pasv_id !'= atoi(params[3]))
00643 /* IDs don't match! */

00644 dcc_destroy (DCC(dcc)) ;

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Humans Complement Tools

Example from Network

00436 /* if there are multiple addresses, return
random one */

00437 use v4 = count v4 <=1 ? 0 rand() % count v4;

00438 use v6 = count v <=1 ? 0 rand() % count vé6;

N HNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Outline

e The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

e What is static analysis?
e Limits of automatic tools
e State of the art in static analysis tools

e Static analyzers in the software
development life cycle

N gNuﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

Assurance from three sources

A =f(p, s, e)

where A is functional assurance, p is
process quality, s is assessed quality of
software, and e is execution resilience.

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

p IS process quality

A=1(p, s, e)

e High assurance software must be
developed with care, for instance:
— Validated requirements
— Good system architecture
— Security designed- and built in
— Trained programmers
— Helpful programming language

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

S Is assessed quality of software

A=1(p, s, e)

e Two general kinds of software
assessment:
— Static analysis

* e.g. code reviews and scanner tools
* examines code

— Testing (dynamic analysis)
- e.g. penetration testing, fuzzing, and red teams
* runs code

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

e IS execution resilience

A=1(p, s, e)

e The execution platform can add assurance
that the system will function as intended.

e Some techniques are:
— Randomize memory allocation
— Execute in a “sandbox” or virtual machine
— Monitor execution and react to intrusions
— Replicate processes and vote on output

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Survivor effect in software

Mistakes that Mistakes that
matter don’t matter

after Bill Pugh
SATE workshop
Nov 2009

N HNationul Institute of Standards and Technology ¢ U.S. Department of Commerce

Late automated analysis is hard

Mistakes that Mistakes that
matter don’t matter

after Bill Pugh
SATE workshop
Nov 2009

N HNaﬁonul Institute of Standards and Technology ¢ U.S. Department of Commerce

Automated analysis best at start

Mistakes that Mistakes that
matter don’t matter

after Bill Pugh
SATE workshop
Nov 2009

N HNaﬁonul Institute of Standards and Technology ¢ U.S. Department of Commerce

When is survivor effect weak?

e If testing or deployment isn’t good at
detecting problems

— True for many security and concurrency
problems

e If faults don’t generate clear failures
— Also true for many security problems

after Bill Pugh
SATE workshop
Nov 2009

N lgNaiional Institute of Standards and Technology ¢ U.S. Department of Commerce

Analysis is like a seatbelt ...

N HNaﬁonul Institute of Standards and Technology ¢ U.S. Department of Commerce

