
Paul E. Black
paul.black@nist.gov

http://samate.nist.gov/

  The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

  What is static analysis?
  Limits of automatic tools
  State of the art in static analysis tools
  Static analyzers in the software

development life cycle

  U.S. National Institute of Standards and Technology
  A non-regulatory agency in Dept. of Commerce
  3,000 employees + adjuncts
  Gaithersburg, Maryland and Boulder, Colorado
  Primarily research, not funding
  Over 100 years in standards and measurements:

from dental ceramics to microspheres, from quantum
computers to fire codes, from body armor to DNA
forensics, from biometrics to text retrieval.

  Software Assurance Metrics And Tool Evaluation (SAMATE)
project is sponsored in part by DHS

  Current areas of concentration
–  Web application scanners
–  Source code security analyzers
–  Static Analyzer Tool Exposition (SATE)
–  Software Reference Dataset
–  Software labels
–  Malware research protocols

  Web site http://samate.nist.gov/

  Public repository for
software test cases

  Almost 1800 cases in C,
C++, Java, and Python

  Search and compose
custom Test Suites

  Contributions from
Fortify, Defence R&D
Canada, Klocwork, MIT
Lincoln Laboratory,
Praxis, Secure Software,
etc.

  Software Facts should be:
–  Voluntary
–  Absolutely simple to produce
–  In a standard format for other claims

  What could be easily supplied?
–  Source available? Yes/No/Escrowed
–  Default installation is secure?
–  Accessed: network, disk, ...
–  What configuration files? (registry, ...)
–  Certificates (e.g., "No Severe weaknesses

found by CodeChecker ver. 3.2")
  Cautions

–  A label can give false confidence.
–  A label shut out better software.
–  Labeling diverts effort from real improvements.

  The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

  What is static analysis?
  Limits of automatic tools
  State of the art in static analysis tools
  Static analyzers in the software

development life cycle

Java,
Ada,
C++,
…

binary

Weaknesses
&

Vulnerabilities
Static

Analysis

  Examine design, source code, or binary for
weaknesses, adherence to guidelines, etc.

Static Analysis
  Code review
  Binary, byte, or source

code scanners
  Model checkers & property

proofs
  Assurance case

Dynamic Analysis
  Execute code
  Simulate design
  Fuzzing, coverage, MC/DC,

use cases
  Penetration testing
  Field tests

  Applies to many artifacts, not just code
  Independent of platform
  In theory, examines all possible

executions, paths, states, etc.
  Can focus on a single specific property

  No need for code
  Conceptually easier - “if you can run the

system, you can run the test”.
  No (or less) need to build or validate

models or make assumptions.
  Checks installation and operation, along

with end-to-end or whole-system.

Static Analysis
  Handles unfinished code
  Higher level artifacts
  Can find backdoors, e.g.,

full access for user name
“JoshuaCaleb”

  Potentially complete

Dynamic Analysis
  Code not needed, e.g.,

embedded systems
  Has few(er) assumptions
  Covers end-to-end or

system tests
  Assess as-installed

  To check intellectual property violation
  By developers to decide what needs to be

fixed (and learn better practices)
  By auditors or reviewer to decide if it is

good enough for use

Syntactic Heuristic Analytic Formal

General
(implicit)

Application
(explicit)

Source
Byte code

Binary

Level of Rigor

Pr
op

er
tie

s

Design

  Range from completely manual
–  code reviews

  analyst aides and tools
–  call graphs
–  property prover

  human-aided analysis
–  annotations

  to completely automatic
–  scanners

  Analysis can look for anything from
general or universal properties:
–  don’t crash
–  don’t overflow buffers
–  filter inputs against a “white list”

  to application-specific properties:
–  log the date and source of every message
–  cleartext transmission
–  user cannot execute administrator functions

  Design,
  Architecture,
  Requirements,
  Source code,
  Byte code, or
  Binary

  Syntactic
–  flag every use of strcpy()

  Heuristic
–  every open() has a close(), every lock() has an

unlock()
  Analytic

–  data flow, control flow, constraint propagation
  Fully formal

–  theorem proving

  License per machine or once per site or
pay per LoC

  Direct tool to code
–  List of files, “make” file, project, directory, etc.

  Compile
  Scan
  Analyze and review reports

  May be simple: flawfinder *.c

 char sys[512] = "/usr/bin/cat ";
25 gets(buff);
 strcat(sys, buff);

30 system(sys);

foo.c:30:Critical:Unvalidated string 'sys' is received from an
external function through a call to 'gets' at line 25. This can
be run as command line through call to 'system' at line 30. User
input can be used to cause arbitrary command execution on the
host system. Check strings for length and content when used for
command execution.

  Name, description, examples, remedies
  Severity, confidence, priority
  Source, sink, control flow, conditions

  View issues by
–  Category
–  File
–  Package
–  Source or sink
–  New since last scan
–  Priority

  User may write custom rules

  Eclipse, Visual Studio, etc.
  Penetration testing
  Execution monitoring
  Bug tracking

  The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

  What is static analysis?
  Limits of automatic tools
  State of the art in static analysis tools
  Static analyzers in the software

development life cycle

  Goals:
–  Enable empirical research based on large test sets
–  Encourage improvement of tools
–  Speed adoption of tools by objectively demonstrating their use

on real software
  NOT to choose the “best” tool
  Events

–  We chose C & Java programs with security implications
–  Participants ran tools and returned reports
–  We analyzed reports
–  Everyone shared observations at a workshop
–  Released final report and all data later

  http://samate.nist.gov/SATE.html
  Co-funded by NIST and DHS, Nat’l Cyber Security Division

  2008:
•  Aspect Security ASC • HP DevInspect
•  Checkmarx CxSuite • SofCheck Inspector for Java
•  Flawfinder • UMD FindBugs
•  Fortify SCA • Veracode SecurityReview
•  Grammatech CodeSonar

  2009:
•  Armorize CodeSecure • Klocwork Insight
•  Checkmarx CxSuite • LDRA Testbed
•  Coverity Prevent • SofCheck Inspector for Java
•  Grammatech CodeSonar • Veracode SecurityReview

  Hold organizing workshop (12 Mar 2010)
  Recruit planning committee.
  Revise protocol.
  Choose test sets. Provide them to participants (17 May)
  Participants run their tools. Return reports (25 June)
  Analyze tool reports (27 Aug)
  Share results at workshop (October)
  Publish data (after Jan 2011)

  To answer, we must list “all weaknesses.”
  Common Weakness Enumeration (CWE) is

an effort to list and organize them.
  Lists almost 700 CWEs
http://cwe.mitre.org/

  Only 1/8 to 1/3 of weaknesses are simple.
  The notion breaks down when

–  weakness classes are related and
–  data or control flows are intermingled.

  Even “location” is nebulous.

  Hierarchy

  Chains

 lang = %2e./%2e./%2e./etc/passwd%00!

  Composites

  from “Chains and Composites", Steve Christey, MITRE
http://cwe.mitre.org/data/reports/chains_and_composites.html

Cross-Site
Scripting
CWE-79

Command
Injection
CWE-77

Improper Input
Validation CWE-20

Validate-
Before-Canonicalize

CWE-180

Relative
Path Traversal

CWE-23

Container
Errors

 CWE-216
Race

Conditions
CWE-362

Predictability
CWE-340

Permissions
CWE-275

Symlink
Following
CWE-61

808 use

819 use

1503 free

 resched

2644 free

 resched

  CWE-121 Stack-based Buffer Overflow
Description Summary:
–  A stack-based buffer overflow condition is a

condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable
or, rarely, a parameter to a function).

White Box Definition:
–  A buffer overflow where the buffer from the

Buffer Write Operation is statically allocated.

From CWE version 1.3

char *buf;

int main(int argc, char **argv) {
 buf = (char *)alloca(256);

 strcpy(buf, argv[1]);
}

–  “… the buffer being overwritten is allocated on the
stack (i.e., is a local variable or, rarely, a
parameter to a function).”

  Strictly, no, because buf is a global variable.

char *buf;

int main(int argc, char **argv) {
 buf = (char *)alloca(256);

 strcpy(buf, argv[1]);
}

–  “… the buffer from the Buffer Write Operation is
statically allocated”

  Again, strictly, no: buf dynamically allocated

  One definition won’t satisfy all needs.
  “Precise” suggests formal.
  “Accurate” suggests (most) people agree.
  Probably not worthwhile for all 700 CWEs.

int main(int argc, char **argv) {
 char buf[MAXSIZE];

 . . . put a string in buf

 if (strlen(buf) + strlen(argv[2]) < MAXSIZE) {
 strcat(buf, argv[2]);
 }

 . . . do something with buf
}

typedef struct {
 int int_field;
 char buf[10];
} my_struct;

int main(int argc, char **argv){
 my_struct s;

 s.buf[10] = 'A';

 return 0;
}

  The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

  What is static analysis?
  Limits of automatic tools
  State of the art in static analysis tools
  Static analyzers in the software

development life cycle

  Tools can’t catch everything: unimplemented features,
design flaws, improper access control, …

  Tools catch real problems: XSS, buffer overflow, cross-site
request forgery

–  13 of SANS Top 25 (21 counting related CWEs)

  Tools are even more helpful when tuned

  Tools alone are not
enough to achieve the
highest “peaks” of quality.

  In the “plains” of typical
quality, tools can help.

  If code is adrift in a “sea”
of chaos, train developers. Tararua mountains and the Horowhenua region, New Zealand

Swazi Apparel Limited www.swazi.co.nz used with permission

All True
Positives

No True
Positives

20 40 60 0 80 100

Reports
Everything

Misses
Everything

0

20

40

60

80

100

Fi
nd

s
m

or
e

fla
w

s

Finds mostly flaws

“Better”

The Perfect Tool
Finds all flaws and

finds only flaws

from DoD 2004

All True
Positives

No True
Positives

Uninitialized variable use
Null pointer dereference

Improper return value use

All flaw types

Use after free

TOCTOU

Memory leak

Buffer overflow

Tainted data/Unvalidated user input

20 40 60 0 80 100

Reports
Everything

Misses
Everything

0

20

40

60

80

100

from DoD 2004

All True
Positives

No True
Positives

Uninitialized variable use

Null pointer dereference

Improper return value use

All flaw types

Use after free

TOCTOU

Memory leak

Buffer overflow

Tainted data/Unvalidated user input

Command injection

Format string vulnerability

20 40 60 0 80 100

Reports
Everything

Misses
Everything

0

20

40

60

80

100

from DoD 2004

All True
Positives

No True
Positives

Uninitialized variable use

Improper return value use

Use after free

TOCTOU

Memory leak

Buffer overflow

Tainted data/Unvalidated user input
Command injection

Format string vulnerability

Null pointer dereference

20 40 60 0 80 100

Reports
Everything

Misses
Everything

0

20

40

60

80

100

from DoD 2004

! Use a
Better

Language

  Reports from 18 tool runs
–  4 or 5 tools on each program

  About 20,000 total warnings
–  but tools prioritize by severity, likelihood

  Reviewed 521 warnings - 370 were not false

  Number of warnings varies a lot by tool and
case

  83 CWE ids/221 weakness names

  Tools look for different weakness classes
  Tools are optimized differently

m
or

e
ce

rta
in

more severe

4

1

1

1

5

1

Roller (10)

IRSSI (3)

Same or other Coincidental None
Includes two
access control
issues – very
hard for tools

  Example from DCC Chat

00513 /* generate a random id */
00514 p_id = rand() % 64;
00515 dcc->pasv_id = p_id;

00642 if (dcc->pasv_id != atoi(params[3]))
00643 /* IDs don't match! */
00644 dcc_destroy(DCC(dcc));

.

.

.

  Example from Network

00436 /* if there are multiple addresses, return
random one */

00437 use_v4 = count_v4 <= 1 ? 0 : rand() % count_v4;
00438 use_v6 = count_v6 <= 1 ? 0 : rand() % count_v6;

  The Software Assurance Metrics And Tool
Evaluation (SAMATE) project

  What is static analysis?
  Limits of automatic tools
  State of the art in static analysis tools
  Static analyzers in the software

development life cycle

A = f(p, s, e)

where A is functional assurance, p is
process quality, s is assessed quality of
software, and e is execution resilience.

A = f(p, s, e)

  High assurance software must be
developed with care, for instance:
–  Validated requirements
–  Good system architecture
–  Security designed- and built in
–  Trained programmers
–  Helpful programming language

A = f(p, s, e)

  Two general kinds of software
assessment:
–  Static analysis

•  e.g. code reviews and scanner tools
•  examines code

–  Testing (dynamic analysis)
•  e.g. penetration testing, fuzzing, and red teams
•  runs code

A = f(p, s, e)

  The execution platform can add assurance
that the system will function as intended.

  Some techniques are:
–  Randomize memory allocation
–  Execute in a “sandbox” or virtual machine
–  Monitor execution and react to intrusions
–  Replicate processes and vote on output

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

after Bill Pugh
SATE workshop
Nov 2009

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

Automated Static Analysis after Bill Pugh
SATE workshop
Nov 2009

Unit Test

System Integration

Field Reports

Mistakes that
matter

Mistakes that
don’t matter

Automated Static Analysis

after Bill Pugh
SATE workshop
Nov 2009

  If testing or deployment isn’t good at
detecting problems
–  True for many security and concurrency

problems
  If faults don’t generate clear failures

–  Also true for many security problems

after Bill Pugh
SATE workshop
Nov 2009

